CHAPTER 7
 Coordinate Geometry

1. Find the distance between the following pairs of points:
(i) $(2,3),(4,1)$
(ii) $(-5,7),(-1,3)$
(iii) $(\mathbf{a}, \mathbf{b}),(-\mathbf{a},-\mathbf{b})$

Ans. (i) Applying Distance Formula to find distance between points $(2,3)$ and $(4,1)$, we get $\mathrm{d}=\sqrt{(4-2)^{2}+(1-3)^{2}}=\sqrt{(2)^{2}+(-2)^{2}}=\sqrt{4+4}=\sqrt{8}=2 \sqrt{2}$ units
(ii) Applying Distance Formula to find distance between points $(-5,7)$ and $(-1,3)$, we get $\mathrm{d}=\sqrt{[-1-(-5)]^{2}+(3-7)^{2}}=\sqrt{(4)^{2}+(-4)^{2}}=\sqrt{16+16}=\sqrt{32}=4 \sqrt{2}$ units
(iii) Applying Distance Formula to find distance between points (a, b) and ($-\mathrm{a},-\mathrm{b}$), we get $\mathrm{d}=\sqrt{(-a-a)^{2}+(-b-b)^{2}}=\sqrt{(-2 a)^{2}+(-2 b)^{2}}=\sqrt{4 a^{2}+4 b^{2}}=\sqrt{4\left(a^{2}+b^{2}\right)}=2 \sqrt{a^{2}+b^{2}}$
2. Find the distance between the points $(0,0)$ and $(36,15)$. Also, find the distance between towns A and B if town B is located at 36 km east and15 km north of town A.

Ans. Applying Distance Formula to find distance between points $(0,0)$ and $(36,15)$, we get $\mathrm{d}=\sqrt{(36-0)^{2}+(15-0)^{2}}=\sqrt{(36)^{2}+(15)^{2}}=\sqrt{1296+225}=\sqrt{1521}=39$

Town B is located at 36 km east and15 km north of town A. So, the location of town A and B can be shown as:

Clearly, the coordinates of point A are $(0,0)$ and coordinates of point B are $(36,15)$.
To find the distance between them, we use Distance formula:
$\mathrm{d}=\sqrt{[36-0]^{2}+(15-0)^{2}}=\sqrt{(36)^{2}+(15)^{2}}=\sqrt{1296+225}=\sqrt{1521}=39 \mathrm{~km}$
3. Determine if the points $(1,5),(2,3)$ and $(-2,-11)$ are collinear.

Ans. Let $\mathrm{A}=(1,5), \mathrm{B}=(2,3)$ and $\mathrm{C}=(-2,-11)$

Using Distance Formula to find distance AB, BC and CA .
$\mathrm{AB}=\sqrt{[2-1]^{2}+(3-5)^{2}}=\sqrt{(1)^{2}+(-2)^{2}}=\sqrt{1+4}=\sqrt{5}$
$\mathrm{BC}=\sqrt{[-2-2]^{2}+(-11-3)^{2}}=\sqrt{(-4)^{2}+(-14)^{2}}=\sqrt{16+196}=\sqrt{212}=2 \sqrt{53}$
$\mathrm{CA}=\sqrt{[-2-1]^{2}+(-11-5)^{2}}=\sqrt{(-3)^{2}+(-16)^{2}}=\sqrt{9+256}=\sqrt{265}$
Since $A B+A C \neq B C, B C+A C \neq A B$ and $A C \neq B C$.
Therefore, the points A, B and C are not collinear.
4. Check whether $(5,-2),(6,4)$ and $(7,-2)$ are the vertices of an isosceles triangle.

Ans. Let $\mathrm{A}=(5,-2), \mathrm{B}=(6,4)$ and $\mathrm{C}=(7,-2)$
Using Distance Formula to find distances AB, BC and CA .
$\mathrm{AB}=\sqrt{[6-5]^{2}+[4-(-2)]^{2}}=\sqrt{(1)^{2}+(6)^{2}}=\sqrt{1+36}=\sqrt{37}$
$\mathrm{BC}=\sqrt{[7-6]^{2}+(-2-4)^{2}}=\sqrt{(1)^{2}+(-6)^{2}}=\sqrt{1+36}=\sqrt{37}$
$\mathrm{CA}=\sqrt{[7-5]^{2}+[-2-(-2)]^{2}}=\sqrt{(2)^{2}+(0)^{2}}=\sqrt{4+0}=\sqrt{4}=2$
Since $A B=B C$.
Therefore, A, B and C are vertices of an isosceles triangle.
5. In a classroom, 4 friends are seated at the points $A(3,4), B(6,7), C(9,4)$ and D $(6,1)$. Champa and Chameli walk into the class and after observing for a few minutes Champa asks Chameli. "Don't you think ABCD is a square?"Chameli disagrees. Using distance formula, find which of them is correct.

Ans. We have $\mathrm{A}=(3,4), \mathrm{B}=(6,7), \mathrm{C}=(9,4)$ and $\mathrm{D}=(6,1)$
Using Distance Formula to find distances AB, BC, CD and DA, we get
$\mathrm{AB}=\sqrt{[6-3]^{2}+[7-4]^{2}}=\sqrt{(3)^{2}+(3)^{2}}=\sqrt{9+9}=\sqrt{18}=3 \sqrt{2}$
$\mathrm{BC}=\sqrt{[9-6]^{2}+[4-7]^{2}}=\sqrt{(3)^{2}+(-3)^{2}}=\sqrt{9+9}=\sqrt{18}=3 \sqrt{2}$
$\mathrm{CD}=\sqrt{[6-9]^{2}+[1-4]^{2}}=\sqrt{(-3)^{2}+(-3)^{2}}=\sqrt{9+9}=\sqrt{18}=3 \sqrt{2}$
DA $=\sqrt{[6-3]^{2}+[1-4]^{2}}=\sqrt{(3)^{2}+(-3)^{2}}=\sqrt{9+9}=\sqrt{18}=3 \sqrt{2}$
Therefore, All the sides of ABCD are equal here.
Now, we will check the length of its diagonals.
$\mathrm{AC}=\sqrt{[9-3]^{2}+[4-4]^{2}}=\sqrt{(6)^{2}+(0)^{2}}=\sqrt{36+0}=6$
$\mathrm{BD}=\sqrt{[6-6]^{2}+[1-7]^{2}}=\sqrt{(0)^{2}+(-6)^{2}}=\sqrt{0+36}=\sqrt{36}=6$
So, Diagonals of ABCD are also equal. ... (2)
From (1) and (2), we can definitely say that ABCD is a square.
Therefore, Champa is correct.

6. Name the type of quadrilateral formed, if any, by the following points, and give reasons for your answer.

(i) $(-1,-2),(1,0),(-1,2),(-3,0)$
(ii) $(-3,5),(3,1),(0,3),(-1,-4)$
(iii) $(4,5),(7,6),(4,3),(1,2)$

Ans. (i) Let $\mathrm{A}=(-1,-2), \mathrm{B}=(1,0), \mathrm{C}=(-1,2)$ and $\mathrm{D}=(-3,0)$
Using Distance Formula to find distances AB, BC, CD and DA, we get

$$
\begin{aligned}
& \mathrm{AB}=\sqrt{[1-(-1)]^{2}+[0-(-2)]^{2}}=\sqrt{(2)^{2}+(2)^{2}}=\sqrt{4+4}=\sqrt{8}=2 \sqrt{2} \\
& \mathrm{BC}=\sqrt{[-1-1]^{2}+[2-0]^{2}}=\sqrt{(-2)^{2}+(2)^{2}}=\sqrt{4+4}=\sqrt{8}=2 \sqrt{2} \\
& \mathrm{CD}=\sqrt{[-3-(-1)]^{2}+[0-2]^{2}}=\sqrt{(-2)^{2}+(-2)^{2}}=\sqrt{4+4}=\sqrt{8}=2 \sqrt{2}
\end{aligned}
$$

DA $=\sqrt{[-3-(-1)]^{2}+[0-(-2)]^{2}}=\sqrt{(-2)^{2}+(2)^{2}}=\sqrt{4+4}=\sqrt{8}=2 \sqrt{2}$
Therefore, all four sides of quadrilateral are equal. ... (1)
Now, we will check the length of diagonals.
$\mathrm{AC}=\sqrt{[-1-(-1)]^{2}+[2-(-2)]^{2}}=\sqrt{(0)^{2}+(4)^{2}}=\sqrt{0+16}=\sqrt{16}=4$
$\mathrm{BD}=\sqrt{[-3-1]^{2}+[0-0]^{2}}=\sqrt{(-4)^{2}+(0)^{2}}=\sqrt{16+0}=\sqrt{16}=4$
Therefore, diagonals of quadrilateral ABCD are also equal. ... (2)
From (1) and (2), we can say that ABCD is a square.
(ii) Let $\mathrm{A}=(-3,5), \mathrm{B}=(3,1), \mathrm{C}=(0,3)$ and $\mathrm{D}=(-1,-4)$

Using Distance Formula to find distances AB, BC, CD and DA, we get
$\mathrm{AB}=\sqrt{[3-(-3)]^{2}+[1-5]^{2}}=\sqrt{(6)^{2}+(-4)^{2}}=\sqrt{36+16}=\sqrt{52}=2 \sqrt{13}$
$\mathrm{BC}=\sqrt{[0-3]^{2}+[3-1]^{2}}=\sqrt{(-3)^{2}+(2)^{2}}=\sqrt{9+4}=\sqrt{13}$
$\mathrm{CD}=\sqrt{[-1-0]^{2}+[-4-3]^{2}}=\sqrt{(-1)^{2}+(-7)^{2}}=\sqrt{1+49}=\sqrt{50}=5 \sqrt{2}$
DA $=\sqrt{[-1-(-3)]^{2}+[-4-5]^{2}}=\sqrt{(2)^{2}+(-9)^{2}}=\sqrt{4+81}=\sqrt{85}$
We cannot find any relation between the lengths of different sides.
Therefore, we cannot give any name to the quadrilateral $A B C D$.
(iii) Let $\mathrm{A}=(4,5), \mathrm{B}=(7,6), \mathrm{C}=(4,3)$ and $\mathrm{D}=(1,2)$

Using Distance Formula to find distances AB, BC, CD and DA, we get

$$
\begin{aligned}
& \mathrm{AB}=\sqrt{[7-4]^{2}+[6-5]^{2}}=\sqrt{(3)^{2}+(1)^{2}}=\sqrt{9+1}=\sqrt{10} \\
& \mathrm{BC}=\sqrt{[4-7]^{2}+[3-6]^{2}}=\sqrt{(-3)^{2}+(-3)^{2}}=\sqrt{9+9}=\sqrt{18}=3 \sqrt{2} \\
& \mathrm{CD}=\sqrt{[1-4]^{2}+[2-3]^{2}}=\sqrt{(-3)^{2}+(-1)^{2}}=\sqrt{9+1}=\sqrt{10} \\
& \mathrm{DA}=\sqrt{[1-4]^{2}+[2-5]^{2}}=\sqrt{(-3)^{2}+(-3)^{2}}=\sqrt{9+9}=\sqrt{18}=3 \sqrt{2}
\end{aligned}
$$

Here opposite sides of quadrilateral ABCD are equal. ... (1)

We can now find out the lengths of diagonals.

$$
\begin{aligned}
& \mathrm{AC}=\sqrt{[4-4]^{2}+[3-5]^{2}}=\sqrt{(0)^{2}+(-2)^{2}}=\sqrt{0+4}=\sqrt{4}=2 \\
& \mathrm{BD}=\sqrt{[1-7]^{2}+[2-6]^{2}}=\sqrt{(-6)^{2}+(-4)^{2}}=\sqrt{36+16}=\sqrt{52}=2 \sqrt{13}
\end{aligned}
$$

Here diagonals of ABCD are not equal. ... (2)
From (1) and (2), we can say that ABCD is not a rectangle therefore it is a parallelogram.
7. Find the point on the x-axis which is equidistant from $(2,-5)$ and $(-2,9)$.

Ans. Let the point be $(x, 0)$ on x-axis which is equidistant from $(2,-5)$ and $(-2,9)$.
Using Distance Formula and according to given conditions we have:

$$
\begin{aligned}
& \sqrt{[x-2]^{2}+[0-(-5)]^{2}}=\sqrt{[x-(-2)]^{2}+[(0-9)]^{2}} \\
& \Rightarrow \sqrt{x^{2}+4-4 x+25}=\sqrt{x^{2}+4+4 x+81}
\end{aligned}
$$

Squaring both sides, we get
$\Rightarrow x^{2}+4-4 x+25=x^{2}+4+4 x+81$
$\Rightarrow-4 \mathrm{x}+29=4 \mathrm{x}+85$
$\Rightarrow 8 \mathrm{x}=-56$
$\Rightarrow \mathrm{x}=-7$
Therefore, point on the x -axis which is equidistant from $(2,-5)$ and $(-2,9)$ is $(-7,0)$
8. Find the values of y for which the distance between the points $P(2,-3)$ and $Q(10$, y) is $\mathbf{1 0}$ units.
Ans. Using Distance formula, we have

$$
\begin{aligned}
& 10=\sqrt{(2-10)^{2}+(-3-y)^{2}} \\
& \Rightarrow 10=\sqrt{(-8)^{2}+9+y^{2}+6 y}
\end{aligned}
$$

$\Rightarrow 10=\sqrt{64+9+y^{2}+6 y}$
Squaring both sides, we get
$100=73+y^{2}+6 y$
$\Rightarrow y^{2}+6 y-27=0$
Solving this Quadratic equation by factorization, we can write
$\Rightarrow y^{2}+9 y-3 y-27=0$
$\Rightarrow y(y+9)-3(y+9)=0$
$\Rightarrow(y+9)(y-3)=0$
$\Rightarrow \mathrm{y}=3,-9$
9. If, $Q(0,1)$ is equidistant from $P(5,-3)$ and $R(x, 6)$, find the values of x. Also, find the distances $Q R$ and PR.
Ans. It is given that Q is equidistant from P and R . Using Distance Formula, we get $P Q=R Q$
$\Rightarrow P Q^{2}=R Q^{2}$
$\Rightarrow \sqrt{(0-5)^{2}+\left[1-(-3)^{2}\right]}=\sqrt{(0-x)^{2}+(1-6)^{2}}$
$\Rightarrow \sqrt{(-5)^{2}+\left[4^{2}\right]}=\sqrt{(x)^{2}+(-5)^{2}}$
$\Rightarrow \sqrt{25+16}=\sqrt{x^{2}+25}$
Squaring both sides, we get
$\Rightarrow 25+16=x^{2}+25$
$\Rightarrow x^{2}=16$
$\Rightarrow \mathrm{x}=4,-4$
Thus, Q is $(4,6)$ or $(-4,6)$.
Using Distance Formula to find QR, we get

Using value of $\mathrm{x}=4 \mathrm{QR}=\sqrt{(4-0)^{2}+\left[6-1^{2}\right]}=\sqrt{16+25}=\sqrt{41}$
Using value of $x=-4 Q R=\sqrt{(-4-0)^{2}+\left[6-1^{2}\right]}=\sqrt{16+25}=\sqrt{41}$
Therefore, $\mathrm{QR}=\sqrt{41}$
Using Distance Formula to find PR, we get
Using value of $\mathrm{x}=4 \mathrm{PR}=\sqrt{(4-5)^{2}+\left[6-(-3)^{2}\right]}=\sqrt{1+81}=\sqrt{82}$
Using value of $x=-4 P R=\sqrt{(-4-5)^{2}+\left[6-(-3)^{2}\right]}=\sqrt{81+81}=\sqrt{162}=9 \sqrt{2}$
Therefore, $x=4,-4$
$\mathrm{QR}=\sqrt{41}, \mathrm{PR}=\sqrt{82}, 9 \sqrt{2}$
10. Find a relation between x and y such that the point (x, y) is equidistant from the point $(3,6)$ and $(-3,4)$.
Ans. It is given that (x, y) is equidistant from $(3,6)$ and $(-3,4)$.
Using Distance formula, we can write
$\sqrt{(x-3)^{2}+(y-6)^{2}}=\sqrt{[x-(-3)]^{2}+(y-4)^{2}}$
$\Rightarrow \sqrt{x^{2}+9-6 x+y^{2}+36-12 y}=\sqrt{x^{2}+9+6 x+y^{2}+16-8 y}$
Squaring both sides, we get
$\Rightarrow x^{2}+9-6 x+y^{2}+36-12 y$
$=x^{2}+9+6 x+y^{2}+16-8 y$
$\Rightarrow-6 x-12 y+45$
$=6 x-8 y+25$
$\Rightarrow 12 \mathrm{x}+4 \mathrm{y}=20$
$\Rightarrow 3 \mathrm{x}+\mathrm{y}=5$

